PRESSUREMETER MODULUS : RELATIONSHIP AND CORRELATIONS BETWEEN ELASTIC, PSEUDO ELASTIC AND CYCLIC E-MODULUS AS DEFINED BY L. MÉNARD

MODULES ÉLASTIQUES, PSEUDO-ELASTIQUES ET CYCLIQUES DANS L’ESSAI PRESSIOMETRIQUE MÉNARD : HISTORIQUE ET PERTINENCE ACTUELLE

Jean-Pierre BAUD, Eurogéo
Michel (Mike) GAMBIN, Apagéo
Robert HEINTZ, Eurasol
MPM Test in a open hole: the conventional « S » shaped curve

Readings plot including Pressure and Volume Loss and giving the Bell-shaped secant Modulus Curve

Baud, Gambin, Heintz, ISP7, Hammamet 2015
MPM « S » shaped curve is often underconsidered in front of so-called SBP self boring pressuremeter tests

Nevertheless, it is not obvious that this « better » shape could be only due to soil compression during insertion of SBP probe (Cassan, 1978)

Baguelin et al., The Pressuremeter, 1978

Baud, Gambin, Heintz, ISP7, Hammamet 2015
MPM test inside the self-bored slotted tube STAF: raw data plot

« lift-off » Pressure

Baud, Gambin, Heintz, ISP7, Hammamet 2015
Start of a Selfbored MPM test: corrected curve

EM = 28.67 MPa

σ_{hs} theoretical 0.067MPa
$k=0.5 \gamma / \gamma_w = 1.8$

σ_{hs} « measured » 0.086MPa
(« p_{OM} »)

Baud, Gambin, Heintz, ISP7, Hammamet 2015
MPM test in a self-bored slotted tube and micro-pressure increments after lift-off contact pressure

Baud, Gambin, Heintz, ISP7, Hammamet 2015
Zoom on the small deformations just after p_0 in this selfbored MPM test.
The same test plot in (ε, p) axes, and E_M modulus in (ε, E_{Ms}) or (ε, E_{Mt}) axes.
The complete G/G_0 S curve in a single MPM test

Figure 4. La première « courbe en S » totale E/E_{max} fonction de ε, mesurée et interprétée, obtenue à l'aide d'un seul essai pressiométrique.
1 cyclic loading in soil (sand)
Multiple cyclic loading in soil (sand)

Ensemble de l’essai

Détail sur les cycles

Baud, Gambin, Heintz, ISP7, Hammamet 2015
1 cyclic loading in soft rock

Baud, Gambin, Heintz, ISP7, Hammamet 2015
2 cyclic loadings in hard rock
Relationship between different moduli

- **E\textsubscript{M}** modulus as defined by L. Ménard appears to be the lowest value in front of all others possible definitions or measurements of a modulus:
 - 1/2 to 1/3 of a SBP modulus, this one being defined on a smaller deformation range
 - 40% of E\textsubscript{Max} (i.e. E\textsubscript{Max}/E\textsubscript{M} = 2.5) in the test taken as exemple for decreasing E/E\textsubscript{Max} all along the test (in sandy-clayey chalk)
 - Ec1/E\textsubscript{M} = 2.7 for a single cycle in sand (slide 10)
 - Ec1/E\textsubscript{M} = 2.5 and Ec14/E\textsubscript{M} = 7.2 for a multiple cyclic test in sand (slide 11)
 - Ec1/E\textsubscript{M} = 3.0 for a single cycle in soft rock (slide 12)
 - Ec1/E\textsubscript{M} = 1.34 and Ec2/E\textsubscript{M} = 1.47 for two cycles in very hard rock (slide 13)
 - E\textsubscript{Oedo}/E\textsubscript{M} can vary from 1 to 4
 - E\textsubscript{Young}/E\textsubscript{M} = 2, 3, 4, 5, 6 (or more ?) for expected values for this hypothetical elastic modulus of soils.

- Ménard developed from the 60ies a corpus of formulas to get settlement and displacement using E\textsubscript{M} and \(\alpha \) rheological coefficient. The oedometric method was during decades the only other alternative, up to the arise of systematic use of E Young modulus in “modern” FEM calculations.
The Ménard empirical α factor is defined as a function of

- Soil type on a clay-sand axis
- Soil status on a consolidation-weathering axis

both reflecting the E_M/p^{*}_LM ratio

The relationship with oedometer test is $\alpha = E_M / E^+$

Further the relation between settlement and foundation width depends on the type and structure of the foundation soils.

<table>
<thead>
<tr>
<th>Type of material</th>
<th>Peat</th>
<th>Clay</th>
<th>Alluvium</th>
<th>Sand</th>
<th>Sand & gravel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E/p_l</td>
<td>α</td>
<td>E/p_l</td>
<td>α</td>
<td>E/p_l</td>
</tr>
<tr>
<td>Over consolidated</td>
<td>> 16</td>
<td>1</td>
<td>> 14</td>
<td>2/3</td>
<td>> 12</td>
</tr>
<tr>
<td>Normally consolidated</td>
<td>1</td>
<td>9 - 16</td>
<td>8 - 14</td>
<td>1/2</td>
<td>7 - 12</td>
</tr>
<tr>
<td>Weathered or altered</td>
<td>7 - 9</td>
<td>1/2</td>
<td>1/2</td>
<td>1/3</td>
<td>1/4</td>
</tr>
</tbody>
</table>

Baud & Gambin, 18th ICSMGE TC102
Does Ménard empirical α factor remain useful for settlement prevision?
The question arises, mainly due to:

- The wrong use of FEM codes requiring E_{Young}’s moduli
- FEM users compelled to create various ways to get so-called E moduli from PMT,
e.g. in recent Standard NF P94-261 for shallow foundations, fixed ratios for E_{Young}/E_M are given:

<table>
<thead>
<tr>
<th></th>
<th>Clay, Silt</th>
<th>Sand</th>
<th>Gravels</th>
</tr>
</thead>
<tbody>
<tr>
<td>overconsolidated</td>
<td>3</td>
<td>3</td>
<td>4.5</td>
</tr>
<tr>
<td>n. consolidated</td>
<td>4.5</td>
<td>4.5</td>
<td>6</td>
</tr>
</tbody>
</table>
A direct relationship between E_{Young} & p^*_{LM} (independant from both E_M and α)

$$E_Y \approx \frac{E_M}{\alpha^2} + \alpha = \left(\frac{E_M}{p^*_{LM}}\right)^{\frac{1}{2}}$$

$$k_E^2 \cdot \left(\frac{p^*_{LM}}{p_0}\right)^{\frac{1}{4}}$$

(Ménard & Rousseau, Sols-Soils n°1, 1962)
(Baud & Gambin, 18th ICSMGE, 2013)

$$\frac{E_Y}{p^*_{LM}} = k_E^2 \cdot \left(\frac{p^*_{LM}}{p_0}\right)^{\frac{1}{2}}$$

with $3 < k_E < 5$ and a question to explore about k_E: a constant value for all soils, or dependant from other soil properties (void ratio, OCR, dilatancy...) ? NEXT TIME !

Baud, Gambin, Heintz, ISP7, Hammamet 2015
1) NON-ELASTICITE DU SQUELETTE DES SOLS

Matériau linéairement élastique :

\[\sigma_{\text{oct}} = K \cdot \varepsilon_{\text{oct}} \]
\[\tau_{\text{oct}} = G \cdot \gamma_{\text{oct}} \]

Squelette d’un sol :

\[\sigma_{\text{oct}} = \mathcal{F}(\varepsilon_{\text{oct}}, \gamma_{\text{oct}}) \approx A \cdot \varepsilon_{\text{oct}} + B \cdot \gamma_{\text{oct}} \]
\[\tau_{\text{oct}} = \mathcal{H}(\varepsilon_{\text{oct}}, \gamma_{\text{oct}}) \approx C \cdot \varepsilon_{\text{oct}} + D \cdot \gamma_{\text{oct}} \]

par suite de la dilatance.

Le module d’Young d’un sol n’existe pas

2) PAS DE REVERSIBILITE TOTALE OU COMPLETE

L’utilisation de modèles élasto-plastiques est toujours approchée

for any soil, Young’s modulus do not exist
Resume of proposals of this contribution:

• The famous S shape curve G/G_0 versus ϵ can totally be plotted from a very little deformation (10^{-4}) to failure (ϵ around 1) in a single self-bored MPM test obtained by the STAF method, and the new high precision automatically regulated GeoPAC pressuremeter."

• The shape of this curve is only roughly in the S shape, it also includes a middle part of pseudoelastic deformation. Some tests exhibit 2 successive rates of PMT creeping, correlated with the end of this pseudoelastic range.

• Cyclic stresses on the largest part of this pseudoelastic range brings that soils behaviour becomes progressively quasi-elastic, although never perfectly. But this elastic behaviour disappears after some hours and soil returns to its “virgin”, hyperbolic (non elastic) behaviour.

• These constant observations are repeatable in different types of soils. It is a validation of the original conceptions of L. Ménard about the E_M, pressuremeter modulus and the rheological coefficient α, more valuable for the analysis of soil deformation than any "Young" E-modulus, because soils never exhibit a Young's modulus.

Baud, Gambin, Heintz, ISP7, Hammamet 2015
These proposals help the **direct** use of PMT curves in FEM programs.

Thank you for your attention

Baud, Gambin, Heintz, ISP7, Hammamet 2015